Переходные процессы Анализ переходных процессов в цепи R, L, C Электрические фильтры Электрические цепи с распределенными параметрами Синтез электрических цепей Графический метод расчета Нелинейные магнитные цепи постоянного потока


Курсовой расчет по электротехнике

Анализ переходных процессов в цепи R, L, C

Переходные процессы в цепи R, L, C описываются дифференциальным уравнением 2-го порядка. Установившиеся составляющие токов и напряжений определяются видом источника энергии и определяются известными методами расчета установившихся режимов. Наибольший теоретический интерес представляют свободные составляющие, так как характер свободного процесса оказывается существенно различным в зависимости от того, являются ли корни характеристического уравнения вещественными или комплексными сопряженными.

  Проанализируем переходной процесс в цепи R, L, C при включении ее к источнику постоянной ЭДС (рис. 145).

Общий вид решения для тока:  .

Переменное электромагнитное поле Основные уравнения Максвелла и их физический смысл Основы теории электромагнитного поля или электродинамики были впервые изложены в 1873 г. английским ученым Максвеллом в труде «Трактат об электричестве и магнетизме». Математические уравнения, описывающие физические процессы в переменном электромагнитном поле, называются уравнениями Максвелла

Установившаяся составляющая: .

Характеристическое уравнение и его корни: , откуда:

.

Дифференциальное уравнение:  .

Независимые начальные условия: .

Зависимое начальное условие: ; откуда .

Постоянные интегрирования определяется из соместного решения системы уравнений:

  , откуда .

Окончательное решение для тока:

.

Исследуем вид функции  при различных значениях корней характеристического уравнения.

а)  Корни характеристического уравнения вещественные, не равны друг другу. Это имеет место при условии  или , тогда , , причем , .

При изменении t от 0 до ∞ отдельные функции  и  убывают по экспоненциальному закону от 1 до 0, причем вторая из них убывает быстрее, при этом их разность . Из этого следует вывод, что искомая функция тока  в крайних точках при t = 0 и при t = ∞ равна нулю, а в промежутке времени 0 < t < ∞ - всегда положительна, достигая при некотором значении времени  своего максимального значения . Найдем этот момент времени:

, или , откуда .

Графическая диаграмма функции  для случая вещественных корней характеристического уравнения показана на рис. 146.

Продолжительность переходного процесса в этом случае определяется меньшим по модулю корнем: .

Характер переходного процесса при вещественных корнях характеристического уравнения получил название затухающего или апериодического.

б) Корни характеристического уравнения комплексно сопряженные. Это имеет место при соотношении параметров  или , тогда

,

  где  - коэффициент затухания,  - угловая частота собственных колебаний.

Решение для исконной функции может быть преобразовано к другому виду:

.

Таким образом, в случае комплексно сопряженных корней характеристического уравнения искомая функция  изменяется во времени по гармоническому закону   с затухающей амплитудой . Графическая диаграмма функции  показана на рис. 147.


Период колебаний , продолжительность переходного процесса определяется коэффициентом затухания:.

Характер переходного процесса при комплексно сопряженных корнях характеристического уравнения получил название колебательного или периодического.

В случае комплексно сопряженных корней для определения свободной составляющей применяют частную форму:

  или ,

где коэффициенты  и  или  и  являются новыми постоянными интегрирования, которые определяются через начальные условия для искомой функции.

в) Корни характеристического уравнения вещественные и равны друг другу. Это имеет место при условии  или , тогда .

Полученное ранее решение для искомой функции  в этом случае становится неопределенным, так как числитель и знаменатель дроби превращаются в нуль. Раскроем эту неопределенность по правилу Лопиталя, считая , а , которая стремится к . Тогда получим:

.

Характер переходного процесса при равных корнях характеристического уравнения получил название критического. Критический характер переходного процесса является граничным между затухающим и колебательным и по форме ничем не отличается от затухающего. Продолжительность переходного процесса . При изменении только сопротивления резистора  затухающий характер переходного процесса соответствует области значений  , колебательный характер - также области значений , а критический характер – одной точке . Поэтому на практике случай равных корней характеристического уравнения встречается крайне редко.

В случае равных корней для определения свободной составляющей применяют частную форму:

,

где коэффициенты  и  являются новыми постоянными интегрирования, которые определяются через начальные условия для искомой функции.

Критический режим переходного процесса характерен тем, что его продолжительность имеет минимальное значение . Указанное свойство находит применение в электротехнике.

Анализ  переходных процессов в цепи R, L Исследуем, как изменяется ток  в цепи с резистором R и катушкой L в переходном режиме.  В качестве примера рассмотрим переходной процесс при включении цепи R, L к источнику а) постоянной ЭДС =const и б) переменной ЭДС 

  Анализ переходных процессов в цепи R, C Исследуем характер переходных процессов  в цепи R, C при включении ее к источнику а)постоянной ЭДС , б)переменной ЭДС  

Переходные функции по току и напряжению Пусть произвольная электрическая цепь с нулевыми начальными условиями  в момент времени включается под действием источника постоянной ЭДС  

Расчет  переходных процессов методом интеграла Дюамеля Метод интеграла Дюамеля применяется для расчета переходных процессов в электрических цепях в том случае, если в рассматриваемой цепи действует источник ЭДС  произвольной формы, отличной от стандартной (постоянной или синусоидальной).


Метод контурных токов