Переходные процессы Анализ переходных процессов в цепи R, L, C Электрические фильтры Электрические цепи с распределенными параметрами Синтез электрических цепей Графический метод расчета Нелинейные магнитные цепи постоянного потока


Курсовой расчет по электротехнике

Расчет магнитной цепи с постоянным магнитом

Постоянные магниты находят применение в автоматике, измерительной технике и других отраслях для получения постоянных магнитных полей. В основе их принципа действия лежит физическое явление остаточного намагничивания. Известно, что любой ферромагнитный материал, будучи намагниченным от внешнего источника, способен сохранять некоторые остатки магнитного поля после снятия внешней намагничивающей силы. Ферромагнитные материалы, способные длительное время сохранять остаточное поле, получили название магнитотвердых. К таким материалам относятся сплавы из ферромагнитных металлов магнико (Ma, Ni, Co) и альнико (Al, Ni, Co). Из магнитотвердых материалов изготавливаются постоянные магниты различных конструктивных форм.

Ферромагнитные материалы, имеют широкую петлю гистерезиса (рис. 223), стенка которой и является кривой размагничивания В(Н) и приводится в справочной литературе.

Пусть требуется рассчитать магнитную цепь, состоящую из постоянного магнита (l1, S1), магнитопровода (l2, S2) и зазора (S2, ) (рис. 224а). Геометрические размеры, кривая размагничивания для постоянного магнита В1(Н1) и основная кривая намагничивания В2(Н2) для магнитопровода заданы. Схема замещения цепи представлена на рис. 27б. Методики анализа и расчета выпрямителей Электротехнические расчеты

Ниже приводится графическое решение задачи.

1.На основе заданных геометрических размеров (l, s) и кривых намагничивания В=f(Н) производится расчет ВАХ для отдельных участков цепи: U1(Ф), U2(Ф) и U0(Ф).

2.В одной системе координат в выбранных масштабах строятся графические диаграммы ВАХ отдельных участков (рис. 225).

3.По 2-ому закону Кирхгофа для схемы цепи: или . Согласно полученному уравнению складываются последовательно (по оси U) ВАХ U2(Ф) и U0(Ф), в результате сложения получается ВАХ (U2+U0). Полученная суммарная ВАХ обращается относительно оси Ф (знак - ) (рис. 225). Точка пересечения обращенной ВАХ с ВАХ U1(Ф) определяет положение рабочей точки n. Дальнейшее решение задачи показана стрелками.

 

 

 

 

 

 

Пример. Заданы геометрические размеры разветвленной магнитной цепи и основная кривая намагничивания В=f(Н) для материала магнитопровода. Аналитическое решение задачи выполняется в следующей последовательности. 1. Магнитная цепь разбивается на однородные участки и согласно этой разбивке составляется эквивалентная схема. Направления МДС на схеме определяются по правилу правоходового винта. 2. На основе заданных геометрических размеров (l, S) и основной кривой намагничивания В=f(Н) выполняется расчет ВАХ для отдельных участков цепи. Результаты расчета ВАХ сводятся для удобства пользования в общую таблицу

Нелинейные цепи переменного тока. Общая характеристика нелинейных цепей переменного тока и методов их исследования Нелинейные цепи переменного тока могут содержать в своей структуре нелинейные элементы любого рода: нелинейные резисторы u(i), нелинейные катушки ψ(i) и нелинейные конденсаторы q(u). Физические характеристики нелинейных элементов на переменном токе могут существенно отличаться от их аналогичных характеристик на постоянном токе. Существуют нелинейные элементы, у которых время установления режима соизмеримо с периодом переменного тока, т.е. проявляется инерционность. По этому показателю все нелинейные элементы разделяют на инерционные и безинерционные.

Методы расчета нелинейных цепей переменного тока на основе ВАХ для эквивалентных синусоид Замена несинусоидальных функций i(t) и u(t) эквивалентными синусоидальными позволяет применить к расчету нелинейных цепей переменного тока комплексный метод со всеми вытекающими из него преимуществами. В простейших случаях, когда схема цепи состоит только из последовательно или только из параллельно включенных элементов, решение задачи может быть выполнено графически методом сложения ВАХ. Отличительной особенностью данного метода является то обстоятельство, что отдельные ВАХ складываются не арифметически, как это имело место в цепях постоянного тока, а векторно в соответствии с уравнениями Кирхгофа в комплексной (векторной) форме

Резонансные явления в нелинейных цепях Резонанс в цепи, содержащей нелинейную катушку с ферромагнитным сердечником и линейный конденсатор, получил название феррорезонанса. Для качественного исследования явления феррорезонанса воспользуемся методом эквивалентных синусоид.


Метод контурных токов