Начертательная геометрия Задачи и примеры

Лабораторные работы по общему курсу физики
Курсовой расчет по электротехнике
Лабораторные работы по общему курсу физики
Молекулярная физика и термодинамика
Колебания и волны
Математика
Вычисление интеграла
Электротехника
Лекции и конспекты по электротехнике и электронике
Расчет электротехнических цепей
Лабораторная работа по теории электрических цепей
Инженерная графика
Сборочные и строительные чертежи
Начертательная геометрия
Машиностроительное черчение
Атомная энергетика
Экологические вопросы эксплуатации АЭС
Техногенное загрязнение
Обзор ядерных реакторов
Атомные станции с реакторами РБМК-1000

Начертательная геометрия, являясь одной из ветвей геометрии, относящейся к математике, имеет ту же цель, что и геометрия вообще: изучение форм предметов окружающего нас материального мира и отношений между ними, установление закономерностей и применение их к решению практических задач.

Прямые частного положения. Относительно плоскостей проекций прямые могут располагаться по разному. Если они параллельны или перпендикулярны плоскостям проекций, то говорят , что это прямые частного положения.

Прямые наибольшего уклона плоскости и определение углов наклона плоскости к плоскостям уровня

Вертикальная плоскость

Деление отрезка в заданном отношении

Точку, прямую и плоскость называют элементарными геометрическими фигурами. Из них могут быть созданы все остальные геометрические фигуры.

Поверхности второго порядка, коническая поверхность (конус вращения и эллиптический конус, получаемый деформацией параллелей конуса вращения в эллипсы); цилиндрическая поверхность (цилиндр вращения, эллиптический, параболический и гиперболический цилиндры.

Аксонометрические изображения довольно широко применяются в конструкторской работе. Это объясняется тем, что они обладают большой наглядностью и сравнительно простым построением.

Позиционные задачи – это задачи, в которых определяется взаимное расположение различных геометрических фигур относительно друг друга. Различают прямые и обратные позиционные задачи:

Прямая линия по отношению к плоскости может занимать следующие положения: принадлежать плоскости; быть параллельной данной плоскости; пересекать эту плоскость.

Пересечение прямой с поверхностью (многогранной и кривой). Снова рассмотрим несколько типов задач.

Параллельность плоскостей Если две плоскости параллельны, то всегда в каждой из них можно построить по две пересекающиеся прямые линии так, чтобы прямые одной плоскости были соответственно параллельны двум прямым другой плоскости

Пересечение плоскости и поверхности, определение натуры сечения Плоские сечения многогранных и кривых поверхностей представляют собой замкнутые фигуры.

Пересечение многогранников

Линия пересечения двух поверхностей, называемая линией перехода, это такая линия, все точки которой одновременно принадлежат обеим поверхностям. В общем случае она представляет собой пространственную кривую или ломаную линию (при пересечении многогранных поверхностей), которая может распадаться на две или более частей. В отдельных случаях эти части могут быть плоскими кривыми или многоугольниками.

Пример. Построить линию пересечения полуцилиндра конусом вращения. На виде спереди линия пересечения уже имеется - она совпадает с вырожденным видом полуцилиндра и находится в пределах площади наложения обеих поверхностей.

Способ концентрических сфер Предварительно скажем несколько слов о пересечении соосных поверхностей, т.е. поверхностей, имеющих общую ось вращения.

Метрические задачи Задачи, в которых решаются вопросы измерения отрезков и углов, определения натуральной формы плоских фигур и т.п., называются метрическими.

Пример. Определить расстояние от точки А до прямой общего положения

Решение пространственных задач на комплексном чертеже значительно упрощается, если интересующие нас объекты занимают в пространстве частное положение, т.е. располагаются параллельно или перпендикулярно плоскостям проекций.

Способ вращения Сущность этого способа заключается в том, что при неизменном положении плоскостей проекций изменяется положение заданных геометрических элементов относительно плоскостей проекций путем их вращения относительно вокруг некоторой оси до тех пор, пока эти элементы не займут частное положение в исходной системе плоскостей.

ОБЩИЕ ПОНЯТИЯ О РАЗВЁРТЫВАНИИ ПОВЕРХНОСТЕЙ Будем рассматривать поверхность как гибкую нерастяжимую оболочку. В этом случае некоторые поверхности путём преобразования можно совместить с плоскостью без разрывов и складок. Поверхности, допускающие такое преобразование, называются развёртывающимися.

З а д а ч а. Определить натуральную длину отрезка АВ(А1В1; А2В2) и углы его наклона к плоскостям проекций

Построить проекции линии пересечения двух плоскостей

З а д а ч а. В плоскости Г (l ∩ m) провести горизонталь h (h1, h2) и фронталь f ( f1; f2)

Даны плоскость Г (l ∩ m) и точка D; требуется  определить расстояние от точки D до плоскости, заданной двумя пересекающимися прямыми l и m

З а д а ч а. Через прямую l (l1,l2) провести плоскость ∆, перпендикулярную к плоскости Г (m ∩ n) Р е ш е н и е . Если плоскость содержит в себе перпендикуляр к другой плоскости, то эти плоскости взаимно перпендикулярны. Чтобы провести через прямую l (l1, l2) искомую плоскость, надо из какой-либо точки прямой, например, А(А1;А2), провести перпендикуляр к  данной плоскости.

 Построить в прямоугольной изометрии сечение пирамиды фронтально проецирующей плоскостью. Пирамида задана своими ортогональными проекциями 

Построить пересечение конуса и призмы Призма занимает проецирующее положение по отношению к фронтальной плоскости проекций, поэтому фронтальная проекция искомой линии пересечения совпадает с вырожденной проекцией призмы в пределах очерка конуса

Построить точки пересечения прямой с поверхностью а) поверхность коническая; б) поверхность сферическая. Через прямую проводим секущую плоскость так, чтобы она пересекла конус или сферу по окружности. Точки пересечения прямой и линии сечения К и Т  являются точками пересечения прямой с поверхностью.

Через прямую АВ (А6 , В6 ) (рис.34а) провести плоскость уклон которой i = 2:3. Строим сетку углового масштаба и с его помощью определяем интервал плоскости 

Построить линию пересечения двух плоскостей откоса дна котлована с бровками АВ и ВС

Определить линию пересечения конической и топографической поверхности

Определить линию пересечения откоса насыпи с топографической поверхностью в случае, когда их горизонтали не пересекаются

  Построить собственные и падающие тени заданных призм Определяем грани, находящиеся в собственной тени, и контуры этих теней.

Построить перспективу отрезка АВ Перспектива точки строится в пересечении перспектив двух прямых, проходящих через точку в пространстве.

Построить собственные и падающую тень призмы при заданном направлении светового луча

Обозначения и размеры сторон основных форматов

Приведены примеры выполнения заданий контрольной работы

Проекции и их свойства Учебная дисциплина «Начертательная геометрии и инженерная графика» даёт студентам знания, которые необходимы им для общения с техническими специалистами на специальном графическом языке. Дисциплина включает следующие разделы: начертательную геометрию, машиностроительное черчение (инженерную графику) и основы компьютерной графики.

Аксонометрические проекции Название аксонометрическая происходит от древнегреческих слов аксон – ось и метрио – измеряю. Метод аксонометрического проецирования состоит в том, что данная фигура вместе с осями прямоугольных координат, к которым она отнесена в пространстве, проецируется на некоторую плоскость проекций, называемую аксонометрической плоскостью проекций или картинной плоскостью

Развитие геометрии Основные закономерности и свойства пространства, составляющие содержание элементарной геометрии, излагались еще до нашей эры в трудах греческих геометров. Особенно большое значение имели работы Эвклида, жившего в III веке до нашей эры. В своих «Началах» Эвклид изложил элементарную геометрию, которая получила название эвклидова геометрия. В основу своей геометрии Эвклид положил систему постулатов, на которых строится эта наука.

Комплексный чертёж Монжа Наибольшее применение на практике получил чертеж, составленный из двух или более связанных между собой ортогональных проекций изображаемой фигуры. Такой чертеж называется комплексным чертежом в ортогональных проекциях или комплексным чертежом. Его предложил использовать в конце XVIII века французский инженер Гаспар Монж.

Комплексный чертеж прямой линии В соответствии со свойством прямолинейности параллельной проекции (см. тему 1) проекцией прямой линии является прямая линия. Поэтому на комплексном чертеже прямая линия будет задаваться в виде своих проекций – прямых линий. Как известно, прямая линия определяется двумя точками.

Проекционные свойства проецирующих прямых 1) одна из проекций прямой является точкой (на ту плоскость проекций, которой она перпендикулярна); эта проекция прямой совпадает с её единственным следом; 2) остальные проекции прямой являются прямыми, перпендикулярными к осям координат; на эти плоскости проекций прямая проецируется без искажения в натуральную величину.

Взаимное положение прямых

Плоскость общего положения на комплексном чертеже Определителем плоскости называется совокупность геометрических элементов, однозначно задающих положение плоскости в пространстве. На комплексном чертеже плоскость задаётся проекциями элементов своего определителя. Плоскость считается заданной, если относительно произвольной точки пространства можно однозначно решить вопрос о её принадлежности к этой плоскости. Плоскость называется плоскостью общего положения, если она не параллельна и не перпендикулярна ни к одной из плоскостей проекций.

К плоскостям частного положения относятся плоскости перпендикулярные и параллельные плоскостям проекций.

Взаимное положение прямых и плоскостей В процессе проектирования и изготовления нового изделия инженерам часто приходится решать задачи, связанные с различными геометрическими объектами. Такие задачи делятся на метрические и позиционные. При решении метрических задач определяются различные геометрические величины: длины отрезков, углы, площади, объемы и т.п. Мы с вами уже встречались с подобными задачами.

Построение линии пересечения проецирующей плоскости с плоскостью общего положения Для решения этой задачи необходимо определить две точки прямой пересечения плоскостей. На плоскости общего положения выбираются две произвольные прямые (как правило, это прямые, входящие в определитель плоскости) и находятся точки их пересечения с проецирующей плоскостью. Соединив найденные точки между собой прямой линией, получим искомую линию пересечения.

Рассмотрим примеры. В точке А восстановить перпендикуляр m к плоскости

Взаимное перпендикулярные прямые В связи с тем, что прямой угол между прямыми общего положения искажается на обеих плоскостях проекций, задачу на построение взаимно перпендикулярных прямых общего положения приходится сводить к задаче о перпендикулярности прямой и плоскости. При этом исходят из того, что две прямые взаимно перпендикулярны в том и только в том случае, если через каждую из них можно провести плоскость перпендикулярную к другой прямой.

Преобразование комплексного чертежа Решение многих геометрических задач на комплексных чертежах этих объектов часто усложняется из-за того, что заданные геометрические объекты расположены произвольно относительно плоскостей проекций и, следовательно, проецируются на эти плоскости в искаженном виде. Поэтому для более простого решения задач прибегают к преобразованию комплексного чертежа, которое переводит интересующие нас прямые и плоские фигуры из общего положения относительно плоскостей проекций в частное (прямые и плоскости проецирующие и уровня).

Основные задачи, решаемые одной заменой плоскости проекций

Понятие о кривой линии Линии играют большую роль в науке и технике. Они позволяют установить и исследовать функциональную зависимость между различными величинами. С помощью линий удаётся решить многие научные и инженерные задачи, решение которых аналитическим путём часто приводит к использованию громоздкого математического аппарата. Кроме самостоятельного значения, линии широко используются при конструировании поверхностей различных технических форм.

Кривые линии на комплексном чертеже В начертательной геометрии кривые линии изучаются по их проекциям на комплексном чертеже. Положение точки, описывающей при своём движении некоторую кривую, определяется в любой момент движения двумя её проекциями. Поэтому в общем случае для полного графического задания кривой линии на комплексном чертеже необходимо задать две проекции этой линии (как правило, обе проекции являются кривыми линиями). В частном случае (когда кривая плоская) одна из проекций кривой может быть прямой линией.

 Многогранником называется тело, ограниченное плоскими многоугольниками. Элементами многогранника являются вершины, ребра и грани. Многогранник называется выпуклым, если весь он лежит по одну сторону от плоскости любой его грани. Правильным называется многогранник, грани которого являются правильным многоугольником. Всего существует пять правильных выпуклых многогранников, которые первым исследовал и описал Платон, живший в V – IV веках до н.э. Поэтому эти многогранники называют также «Платоновы тела».

Поверхности являются самым сложным геометрическим объектом, изучаемым начертательной геометрией и инженерной графикой. Мир поверхностей безграничен. Он простирается от простейшей плоскости до причудливых поверхностей, используемых в архитектуре и скульптуре, от элементарного цилиндра до сложнейших по форме деталей авиадвигателя и т.п. Все, что нас окружает дома, машины, люди и т.д. – принадлежит к миру поверхностей. Поверхности в нашей жизни играют очень важную роль, особенно для инженера-конструк­тора, который должен знать и уметь, как сконструировать поверхность, чтобы она отвечала заранее заданным требованиям. А эта задача весьма трудоемка и часто бывает нелегко найти правильное решение. Рассмотрим некоторые общие вопросы образования и задания поверхностей, которые необходимо знать проектировщику при решении практических задач.

Графический способ задания поверхностей предполагает задание поверхности на комплексном чертеже. При этом, как уже было сказано выше, поверхность считается заданной, а ее чертеж – метрически определенным, если по одной проекции точки, лежащей на поверхности, можно построить другую ее проекцию. Чаще всего поверхность задается на чертеже проекциями элементов своего определителя, т.е. тех геометрических объектов, с помощью которых поверхность была образована.

Поверхностью вращения называется поверхность, образованная в процессе вращения некоторой линии вокруг неподвижной оси. Линия, которая вращается, называется образующей поверхности. Образующая линия может быть прямой, плоской или пространственной кривой. Каждая точка образующей линии поверхности (например, точка В) при своём вращении будет описывать окружность с центром на оси i, которая располагается в плоскости, перпендикулярной оси вращения (рис.10.1). Такие окружности называются параллелями. Наибольшая параллель называется экватором, наименьшая – горлом

Поверхности вращения, образованные окружностью

Линейчатой поверхностью называется поверхность, образованная при перемещении прямой линии в пространстве по какому-либо закону. Характер движения прямолинейной образующей определяет вид линейчатой поверхности. Обычно закон движения образующей задаётся с помощью направляющих линий. В общем случае для задания линейчатой поверхности необходимы три направляющие линии. Выделим на линейчатой поверхности три какие-нибудь линии a, b и c и примем их за направляющие.

 Если линейчатая поверхность задана с помощью одной направляющей линии, вместо недостающих двух направляющих необходимо задать два условия, которые должна выполнять прямолинейная образующая при своем движении. В зависимости от условий линейчатые поверхности с одной направляющей делятся на следующие виды: цилиндрическая поверхность общего вида – образующая пересекает направляющую и остаётся параллельной заданному направлению; коническая поверхность общего вида – образующая пересекает направляющую и проходит через фиксированную точку пространства, называемую вершиной конической поверхности; торс (поверхность с ребром возврата) – образующая при своём движении остаётся касательной к направляющей.

Нелинейчатой поверхностью называется поверхность, образованная при перемещении кривой линии в пространстве по какому-либо закону. Вид нелинейчатой поверхности определяется формой образующей линии и характером её движения.

Способ вспомогательных секущих сфер Использование сферы в качестве вспомогательной секущей поверхности основано на свойстве сферы пересекаться с соосной с ней поверхностью вращения по окружностям. Соосными называются поверхности вращения, имеющие общую ось. Две соосные поверхности вращения пересекаются друг с другом по окружностям, причем число окружностей равно числу точек пересечения меридианов таких поверхностей

Способ эксцентрических секущих сфер При этом способе вспомогательные сферы проводят из разных центров.

Сечение поверхности плоскостью Линия, которая получается от пересечения поверхности с плоскостью, является плоской кривой, лежащей в секущей плоскости. Чтобы построить проекции этой линии на чертеже, находят проекции ее отдельных точек и, соединяя одноименные проекции точек плавными кривыми (по лекалу), получают проекции искомой линии.

Построение линии пересечения двух плоскостей Как известно, две плоскости пересекаются по прямой линии. Прямая определяется двумя точками. Поэтому для построения линии пересечения двух плоскостей достаточно построить две её точки. А для этого нужно провести две вспомогательные плоскости.

Рассмотрим два примера на построение точек пересечения линии с поверхностью. Пример. Построить точку пересечения кривой линии n с конической поверхностью Φ(a, S). Сначала нужно построить каркас образующих заданной линейчатой поверхности

Развёртки поверхностей Представим поверхность в виде тонкой и гибкой, но нерастяжимой пленки. В этом случае некоторые поверхности можно постепенным изгибанием совместить с плоскостью так, что при этом не возникает ни разрывов, ни складок. Поверхности, обладающие этим свойством, называются развертывающимися, а фигура, полученная в результате совмещения поверхности с плоскостью – разверткой данной поверхности.

Построение приближенных разверток развертывающихся линейчатых поверхностей Для развертывающихся линейчатых поверхностей строят приближенные развертки потому, что в процессе построения развертки заданную поверхность заменяют (аппроксимируют) вписанной в неё или описанной вокруг неё многогранной поверхностью (цилиндрические поверхности заменяют призмами, конические поверхности – пирамидами).