Атомные станции с реаторами РБМК-1000

Атомные станции с реакторами РБМК-1000
  • Реактор Большой Мощности Канальный (РБМК
  • Конструкция реактора РБМК-1000
  • ТВС
  • Запорно - регулирующий клапан
  • Тепловыделяющие сборки
  • Результаты исследования защиты и радиационной
    безопасности АЭС с реакторами РБМК-1000
  •  МКЭР — Многопетлевой Канальный Энергетический Реактор
  • 5-й энергоблок Курской АЭС (РБМК-1000 3-го поколения)
  • Аварии на энергоблоках с РБМК
  • Особенности атомной энергетики
  • Выбросы и сбросы вредных веществ при эксплуатации АС
  •  

    Реактор Большой Мощности Канальный (РБМК) — серия энергетических ядерных реакторов, разработанных в Советском Союзе. Реактор РБМК канальный, гетерогенный, графито-водный, кипящего типа, на тепловых нейтронах. Теплоноситель — кипящая вода.

    Главный конструктор реакторной установки: НИКИЭТ, Академик Доллежаль Н. А.
    Научный руководитель проекта: ИАЭ им. И. В. Курчатова, Академик Александров А. П.
    Генеральный проектировщик (ЛАЭС): ГСПИ-11 (ВНИПИЭТ), Гутов А. И.
    Главный конструктор турбоустановки: ХТГЗ, «Турбоатом», Косяк Ю. Ф.
    Разработчик металлоконструкции: ЦНИИПСК, Мельников Н. П.
    Головная материаловедческая организация: «Прометей», Копырин Г. И.
    Проектировщик и изготовитель электромеханического оборудования СУЗ, КТО: КБ завода «Большевик», Клаас Ю. Г.

    На данный момент серия этих реакторов включает в себя три поколения.

    Головной реактор серии — 1-й и 2-й блоки Ленинградской АЭС.

    История создания и эксплуатации

    Центральный зал РБМК-1000<br>  (Ленинградская АЭС).

    Центральный зал РБМК-1000
    (Ленинградская АЭС).

    Реактор первой в мире АЭС (АМ-1 («Атом Мирный»), Обнинская АЭС, 1954 год) был именно уран-графитовым канальным реактором с водяным теплоносителем. Отработка технологий уран-графитовых реакторов производилась на промышленных реакторах, в том числе реакторах «двойного» назначения (двухцелевых реакторах), на которых, помимо «военных» изотопов, производилась электроэнергия, а тепло использовалось для отопления близлежащих городов.

    Промышленные реакторы, которые были построены в СССР: А (1948 год), АИ(ПО «Маяк» в Озёрске), реакторы АД (1958 г.), АДЭ-1 (1961 г.) и АДЭ-2 (1964 г.) (Горно-химический комбинат в Железногорске), реакторы И-1 (1955 г.), ЭИ-2(1958 г.), АДЭ-3, АДЭ-4 (1964 г.) и АДЭ-5 (1965 г.) (Сибирский химический комбинат в Северске)[1].

    С 1960-х годов в СССР начата разработка чисто энергетических реакторов типа будущего РБМК. Некоторые конструкторские решения отрабатывались на опытных энергетических реакторах «Атом Мирный Большой»: АМБ-1 (1964 год) и АМБ-2 (1967 год), установленных на Белоярской АЭС.

    Разработка собственно реакторов РБМК началась с середины 60-х годов и опиралась, в значительной мере, на большой и успешный опыт проектирования и строительства промышленных уран-графитовых реакторов. Основные преимущества реакторной установки виделись создателями в:

                        максимальном применении опыта уран-графитовых реакторов;

                        отработанных связях между заводами, налаженном выпуске основного оборудования;

                        состоянии промышленности и строительной индустрии СССР;

                        многообещающих нейтронно-физических характеристиках (малое обогащение топлива).

    В целом конструктивные особенности реактора повторяли опыт предыдущих уран-графитовых реакторов. Новыми стали топливный канал, сборки тепловыделяющих элементов из новых конструкционных материалов — сплавов циркония, и с новой формой топлива — металлический уран был заменён его диоксидом, а также параметры теплоносителя. Реактор изначально проектировался как одноцелевой — для производства электрической и тепловой энергии.

    Работы над проектом начались в ИАЭ (РНЦ КИ) и НИИ-8 (НИКИЭТ) в 1964 году. В 1965 году проект получил название Б-190, а его конструирование было поручено КБ завода «Большевик». В 1966 году решением министерского НТС работа над проектом была поручена НИИ-8 (НИКИЭТ), руководимому Доллежалем.

    15 апреля 1966 года главой Минсредмаша Е. П. Славским было подписано задание на проектирование Ленинградской атомной электростанции в 70 км по прямой к западу от Ленинграда в 4 км от поселка Сосновый Бор. В начале сентября 1966 года проектное задание было закончено.

    29 ноября 1966 года Советом Министров СССР принято постановление № 800—252 о строительстве первой очереди ЛАЭС, определена организационная структура и кооперация предприятий для разработки проекта и сооружения АЭС.

    Первый энергоблок с реактором типа РБМК-1000 запущен в 1973 году на Ленинградской АЭС.

    При строительстве первых энергетических АЭС в СССР бытовало мнение, что атомная станция является надёжным источником энергии, а возможные отказы и аварии — маловероятные или даже гипотетические события. Кроме того, первые блоки сооружались внутри системы среднего машиностроения и предполагали эксплуатацию организациями этого министерства. Правила по безопасности на момент разработки либо отсутствовали, либо были несовершенны. По этой причине на первых энергетических реакторах серий РБМК-1000 и ВВЭР-440 не было в достаточном количестве систем безопасности, что потребовало в дальнейшем серьёзной модернизации таких энергоблоков. В частности, в первоначальном проекте первых двух блоков РБМК-1000 Ленинградской АЭС не было гидробаллонов системы аварийного охлаждения реактора (САОР), количество аварийных насосов было недостаточным, отсутствовали обратные клапаны (ОК) на раздаточно-групповых коллекторах (РГК) и пр. В дальнейшем, в ходе модернизации, все эти недостатки были устранены.

    Дальнейшее строительство блоков РБМК предполагалось осуществлять для нужд Министерства энергетики и электрификации СССР. Учитывая меньший опыт работы Минэнерго с АЭС, в проект были внесены существенные изменения, повышающие безопасность энергоблоков. Кроме того, были внесены изменения, учитывающие опыт работы первых РБМК. В том числе были применены гидробаллоны САОР, функцию аварийных электронасосов САОР стали выполнять 5 насосов, применены обратные клапаны в РГК, сделаны другие доработки. По этим проектам были построены энергоблоки 1, 2 Курской АЭС и 1, 2 Чернобыльской АЭС. На этом этапе закончилось строительство энергоблоков РБМК-1000 первого поколения (6 энергоблоков).

    Дальнейшее совершенствование АЭС с РБМК началось с проработки проектов второй очереди Ленинградской АЭС (энергоблоки 3, 4). Основной причиной доработки проекта стало ужесточение правил безопасности. В частности, была внедрена система баллонной САОР, САОР длительного расхолаживания, представленная 4 аварийными насосами. Система локализации аварии была представлена не баком-барботером, как ранее, а башней локализации аварий, способной аккумулировать и эффективно препятствовать выбросу радиоактивности при авариях с повреждением трубопроводов реактора. Были сделаны другие изменения. Основной особенностью третьего и четвёртого энергоблоков Ленинградской АЭС стало техническое решение о расположении РГК на высотной отметке, превышающей высотную отметку активной зоны. Это позволяло в случае аварийной подачи воды в РГК иметь гарантированный залив активной зоны водой. В дальнейшем это решение не применялось.

    После строительства энергоблоков 3, 4 Ленинградской АЭС, находящейся в ведении Министерства среднего машиностроения, началось проектирование реакторов РБМК-1000 для нужд Минэнерго СССР. Как отмечалось выше, при разработке АЭС для Минэнерго, в проект вносились дополнительные изменения, призванные повысить надежность и безопасность АЭС, а также увеличить её экономический потенциал. В частности, при доработке вторых очередей РБМК был применен барабан-сепаратор (БС) большего диаметра (внутренний диаметр доведен до 2,6 м), внедрена трехканальная система САОР, первые два канала которых снабжались водой от гидробаллонов, третий — от питательных насосов. Увеличено количество насосов аварийной подачи воды в реактор до 9 штук и внесены другие изменения, существенно повысившие безопасность энергоблока (принципиально, уровень исполнения САОР удовлетворял не только документам, действовавшим в момент проектирования АЭС, но и, во многом, современным требованиям). Существенно увеличились возможности системы локализации аварий, которая была рассчитана на противодействие аварии, вызванной гильотинным разрывом трубопровода максимального диаметра (напорный коллектор главных циркуляционных насосов (ГЦН) Ду 900). Вместо баков-барботеров первых очередей РБМК и башен локализации 3 и 4 блоков ЛАЭС, на РБМК второго поколения Минэнерго были применены двухэтажные бассейны-локализаторы, что существенно повысило возможности системы локализации аварий (СЛА). Отсутствие гермооболочки компенсировалось стратегией применения системы плотно-прочных боксов (ППБ), в которых располагались трубопроводы контура многократной принудительной циркуляции теплоносителя. Конструкция ППБ, толщина стен рассчитывались из условия сохранения целостности помещений при разрыве находящегося в нём оборудования (вплоть до напорного коллектора ГЦН Ду 900 мм). ППБ не охватывался БС и пароводяные коммуникации. Также при строительстве АЭС реакторные отделения строились дубль-блоком, что означает, что реакторы двух энергоблоков находятся по существу в одном здании (в отличие от предыдущих АЭС с РБМК, в которых каждый реактор находился в отдельном здании). Так были исполнены реакторы РБМК-1000 второго поколения: энергоблоки 3 и 4 Курской АЭС, 3 и 4 Чернобыльской АЭС, 1 и 2 Смоленской АЭС (итого, вместе с 3 и 4 блоком Ленинградской АЭС, 8 энергоблоков).

    В общей сложности сдано в эксплуатацию 17 энергоблоков с РБМК. Срок окупаемости серийных блоков второго поколения составил 4-5 лет.

    Вклад АЭС с реакторами РБМК в общую выработку электроэнергии всеми АЭС России составляет порядка 50 % 

    До аварии на Чернобыльской АЭС в СССР существовали обширные планы строительства таких реакторов, однако после аварии планы по сооружению энергоблоков РБМК на новых площадках были свернуты. После 1986 года были введены в эксплуатацию два реактора РБМК: РБМК-1000 Смоленской АЭС (1990 год) и РБМК-1500 Игналинской АЭС (1987 год). Ещё один реактор РБМК-1000 5-го блока Курской АЭС находится в стадии достройки (~70-80 % готовности). После аварии на Чернобыльской АЭС были проведены дополнительные исследования и модернизация. В настоящее время реакторы РБМК не уступают по безопасности и экономическим показателям другим АЭС того же периода постройки. На сегодняшний день приемлемый уровень безопасности РБМК подтверждён международными экспертизами.

    Турбины тепловых и атомных электростанций